3.58 \(\int \frac {1}{(a-a \sin ^2(c+d x))^2} \, dx\)

Optimal. Leaf size=32 \[ \frac {\tan ^3(c+d x)}{3 a^2 d}+\frac {\tan (c+d x)}{a^2 d} \]

[Out]

tan(d*x+c)/a^2/d+1/3*tan(d*x+c)^3/a^2/d

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 32, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {3175, 3767} \[ \frac {\tan ^3(c+d x)}{3 a^2 d}+\frac {\tan (c+d x)}{a^2 d} \]

Antiderivative was successfully verified.

[In]

Int[(a - a*Sin[c + d*x]^2)^(-2),x]

[Out]

Tan[c + d*x]/(a^2*d) + Tan[c + d*x]^3/(3*a^2*d)

Rule 3175

Int[(u_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Dist[a^p, Int[ActivateTrig[u*cos[e + f*x
]^(2*p)], x], x] /; FreeQ[{a, b, e, f, p}, x] && EqQ[a + b, 0] && IntegerQ[p]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rubi steps

\begin {align*} \int \frac {1}{\left (a-a \sin ^2(c+d x)\right )^2} \, dx &=\frac {\int \sec ^4(c+d x) \, dx}{a^2}\\ &=-\frac {\operatorname {Subst}\left (\int \left (1+x^2\right ) \, dx,x,-\tan (c+d x)\right )}{a^2 d}\\ &=\frac {\tan (c+d x)}{a^2 d}+\frac {\tan ^3(c+d x)}{3 a^2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 26, normalized size = 0.81 \[ \frac {\frac {1}{3} \tan ^3(c+d x)+\tan (c+d x)}{a^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a - a*Sin[c + d*x]^2)^(-2),x]

[Out]

(Tan[c + d*x] + Tan[c + d*x]^3/3)/(a^2*d)

________________________________________________________________________________________

fricas [A]  time = 0.41, size = 34, normalized size = 1.06 \[ \frac {{\left (2 \, \cos \left (d x + c\right )^{2} + 1\right )} \sin \left (d x + c\right )}{3 \, a^{2} d \cos \left (d x + c\right )^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a-a*sin(d*x+c)^2)^2,x, algorithm="fricas")

[Out]

1/3*(2*cos(d*x + c)^2 + 1)*sin(d*x + c)/(a^2*d*cos(d*x + c)^3)

________________________________________________________________________________________

giac [A]  time = 0.13, size = 25, normalized size = 0.78 \[ \frac {\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )}{3 \, a^{2} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a-a*sin(d*x+c)^2)^2,x, algorithm="giac")

[Out]

1/3*(tan(d*x + c)^3 + 3*tan(d*x + c))/(a^2*d)

________________________________________________________________________________________

maple [A]  time = 0.30, size = 25, normalized size = 0.78 \[ \frac {\frac {\left (\tan ^{3}\left (d x +c \right )\right )}{3}+\tan \left (d x +c \right )}{d \,a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a-a*sin(d*x+c)^2)^2,x)

[Out]

1/d/a^2*(1/3*tan(d*x+c)^3+tan(d*x+c))

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 25, normalized size = 0.78 \[ \frac {\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )}{3 \, a^{2} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a-a*sin(d*x+c)^2)^2,x, algorithm="maxima")

[Out]

1/3*(tan(d*x + c)^3 + 3*tan(d*x + c))/(a^2*d)

________________________________________________________________________________________

mupad [B]  time = 13.45, size = 24, normalized size = 0.75 \[ \frac {\mathrm {tan}\left (c+d\,x\right )\,\left ({\mathrm {tan}\left (c+d\,x\right )}^2+3\right )}{3\,a^2\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a - a*sin(c + d*x)^2)^2,x)

[Out]

(tan(c + d*x)*(tan(c + d*x)^2 + 3))/(3*a^2*d)

________________________________________________________________________________________

sympy [A]  time = 5.17, size = 238, normalized size = 7.44 \[ \begin {cases} - \frac {6 \tan ^{5}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{3 a^{2} d \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 9 a^{2} d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 9 a^{2} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 3 a^{2} d} + \frac {4 \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{3 a^{2} d \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 9 a^{2} d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 9 a^{2} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 3 a^{2} d} - \frac {6 \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{3 a^{2} d \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 9 a^{2} d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 9 a^{2} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 3 a^{2} d} & \text {for}\: d \neq 0 \\\frac {x}{\left (- a \sin ^{2}{\relax (c )} + a\right )^{2}} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a-a*sin(d*x+c)**2)**2,x)

[Out]

Piecewise((-6*tan(c/2 + d*x/2)**5/(3*a**2*d*tan(c/2 + d*x/2)**6 - 9*a**2*d*tan(c/2 + d*x/2)**4 + 9*a**2*d*tan(
c/2 + d*x/2)**2 - 3*a**2*d) + 4*tan(c/2 + d*x/2)**3/(3*a**2*d*tan(c/2 + d*x/2)**6 - 9*a**2*d*tan(c/2 + d*x/2)*
*4 + 9*a**2*d*tan(c/2 + d*x/2)**2 - 3*a**2*d) - 6*tan(c/2 + d*x/2)/(3*a**2*d*tan(c/2 + d*x/2)**6 - 9*a**2*d*ta
n(c/2 + d*x/2)**4 + 9*a**2*d*tan(c/2 + d*x/2)**2 - 3*a**2*d), Ne(d, 0)), (x/(-a*sin(c)**2 + a)**2, True))

________________________________________________________________________________________